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Abstract. The inclusion of a threshold in the dynamics of layered neural networks with variable
activity is studied at arbitrary temperature. In particular, the effects on the retrieval quality of a
self-controlled threshold obtained by forcing the neural activity to stay equal to the activity of the
stored patterns during the whole retrieval process, are compared with those of a threshold chosen
externally for every loading and every temperature through optimization of the mutual information
content of the network. Numerical results, mostly concerning low-activity networks are discussed.

1. Introduction

Recently, the introduction of a threshold in the dynamics of neural networks with low activity
was discussed again by several authors [1–3] (and references therein). Extremely diluted
models [1,3] and models for sequential patterns [2] have been looked at. In all cases it is found
that the retrieval quality—overlap, basin of attraction, critical storage capacity, information
content—depends on the methods of activity control employed. New insights in the dynamical
properties of these models have been obtained and new suggestions have been put forward for
the choice of threshold functions in order to get enhanced retrieval.

For these extremely diluted asymmetric networks the dynamics is relatively simple. This
is due to the fact that there are no feedback correlations and no common ancestors in this system
such that the neurons are completely uncorrelated in the course of the time evolution ( [4,5] and
references therein). The evolution equations can then be written down in closed form and the
structure of these equations does not even change anymore after the first time step. Therefore,
the question is relevant whether the introduction of such a self-control threshold function in
models having more complicated dynamics still leads to enhanced retrieval.

In this context it is interesting to study layered networks. First, as is common knowledge
by now, exactly these models are used in many applications in several areas of research [6–8].
Secondly, these networks contain correlations among the neurons because of the presence
of common ancestors. Nevertheless, these correlations can be handled exactly giving rise to
layer-to-layer evolution equations in closed form [9–14]. We remark that such a closed form
is no longer possible for fully connected networks [5, 15].

In view of the fact that in practical applications of pattern recognition, information is
generally encoded by a small fraction of bits and that in neurophysiological studies the activity
levels of real neurons is found to be low, the models discussed in what follows are allowed
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to have a variable pattern activity [16]. The limit of low activity (or in other words sparse
coding) is especially interesting. Sparsely coded models have indeed a very large storage
capacity behaving as 1/(a ln a) in the limit a going to 0, where a is the pattern activity (see,
e.g., [17–21] and references therein). However, for low activity the basins of attraction might
become very small and the information content in a single pattern is reduced. For the models
mentioned above these drawbacks can be avoided and an optimal retrieval performance can be
reached by introducing an appropriate threshold in the dynamics [1–3, 21]. In this paper we
study whether this can also be done for layered models.

In the layered models discussed in what follows we take two different approaches. The
first one consists in forcing the neural activity to be the same as the activity of the stored
patterns during the whole retrieval process. In order to guarantee this we introduce a time-
dependent threshold in the dynamics chosen as a function of the noise and the pattern activity
in the network and adapting itself autonomously in the course of the time evolution. This is
the self-control method proposed in [3].

The second approach chooses a threshold by optimizing the information content of the
network since for very small pattern activities the number of active neurons and the information
represented by a single pattern decreases. The relevant quantity we use here is the mutual
information function [3,22,23] and the threshold will be called the optimal threshold. Here the
threshold is time-independent and externally chosen for every loading and every temperature.
Both methods are compared for zero and non-zero temperatures for networks with various
activities.

The rest of this paper is organized as follows. In section 2 we introduce the layered
network model and define the relevant order parameters. Section 3 presents the dynamical
evolution equations for these order parameters obtained by the probabilistic signal-to-noise
ratio analysis. In section 4 we discuss the different thresholds mostly in the context of low
activity. In section 5 we present numerical results at zero and non-zero temperatures. Finally
we end with some concluding remarks in section 6.

2. The model

Consider a neural network composed of binary neurons arranged in layers, each layer
containing N neurons. A neuron can take values σi(t) ∈ {0, 1} where t = 1, . . . , L is the
layer index and i = 1, . . . , N labels the site. Each neuron in layer t is unidirectionally
connected to all neurons on layer t + 1. We want to store p = αN patterns {ξµi (t)},
i = 1, . . . , N , µ = 1, . . . , p on each layer t , taking the values {0, 1}. They are assumed
to be independent identically distributed random variables (IIDRV) with respect to i, µ and
t , determined by the probability distribution: p(ξµi (t)) = aδ(ξ

µ

i (t) − 1) + (1 − a)δ(ξµi (t)).
From this form we find that the expectation value and the variance of the patterns are given by
E[ξµi (t)] = E[ξµi (t)

2] = a. Moreover, no statistical correlations occur, in fact for µ �= ν the
covariance vanishes: Cov(ξµi (t), ξ

ν
i (t)) ≡ E[ξµi (t)ξ

ν
i (t)] − E[ξµi (t)]E[ξνi (t)] = 0. In what

follows it will be convenient to make the change of variables ηµi (t) = ξ
µ

i (t)− a such that the

interesting expectation values are E[ηµi (t)] = 0 and E[ηµi (t)
2] = a(1 − a) ≡ ã.

The state σi(t + 1) of neuron i on layer t + 1 is determined by the state of the neurons on
the previous layer t according to the stochastic rule

P(σi(t + 1) | σ1(t), . . . , σN(t)) = {1 + exp[2(2σi(t + 1)− 1)βhi(t)]}−1. (1)

The parameter β = 1/T controls the stochasticity of the network dynamics, it measures the
noise level. Given the configuration {σi(t)}; i = 1, . . . , N on layer t , the local field hi(t) in
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site i on the next layer t + 1 is given by

hi(t) =
N∑
j=1

Jij (t)(σi(t)− a)− θ(t) (2)

with θ(t) the threshold to be specified later. The couplings Jij (t) are the synaptic strengths of
the interaction between neuron j on layer t , and neuron i on layer t + 1. They depend on the
stored patterns at different layers according to the covariance rule

Jij (t) = 1

Nã

N∑
j=1

(ξ
µ

i (t + 1)− a)(ξµj (t)− a). (3)

These couplings then permit one to store sets of patterns to be retrieved by the layered network.
We remark that in the limit T → 0 the updating rule (1) reduces to the deterministic form

σi(t + 1) = �(hi(t)) (4)

where �(x) is the standard step function taking the value {0, 1}.
We take parallel updating. The dynamics of this network is defined as follows (see [9,10]

and references therein). Initially, the first layer (the input) is externally set in some fixed state.
In response to that, all neurons of the second layer update synchronously at the next time step,
according to the stochastic rule (1), and so on. Layered feed-forward networks allow an exact
analytic treatment of their parallel dynamics stemming from the independent choice of the
representations of the patterns on different layers. By exact analytic treatment we mean that,
given the configuration of the first layer as the initial state, the configuration on layer t that
results from the dynamics is predicted by recursion formulae for the relevant order parameters.
This configuration is known through the calculation of macroscopic quantities obtained by
averaging over the thermal noise associated with the dynamics, as well as over the random
choice of the stored patterns.

The relevant order parameters measuring the quality of retrieval are the main overlap of
the microscopic state of the network and the µth pattern, and the neural activity of the neurons

M
µ

N(t) = 1

Nã

N∑
i=1

η
µ

i (t)(σi(t)− a) qN(t) = 1

N

N∑
i=1

σi(t). (5)

These order parameters determine the Hamming distance between the state of the network and
the pattern {ξµi (t)}

dH (ξ
µ(t), σ (t)) = 1

N

N∑
i=1

[ξµi (t)− σi(t)]2. (6)

It is known that the Hamming distance is a good measure for the performance of a network
when the neural activity a ∼ 1

2 . For low-activity networks, however, it does not give
a complete description of the information content [3]. Therefore, the mutual information
function I (σi(t); ξµi (t)) has been introduced [3, 23]:

I (σi(t); ξµi (t)) = S(σi(t))− 〈S(σi(t)|ξµi (t))〉ξµ(t) (7)

where ξµi (t) is considered as the input and σi(t) as the output with S(σi(t)) its entropy and
S(σi(t)|ξµi (t)) its conditional entropy, namely,

S(σi(t)) = −
∑
σ

p(σi(t)) ln[p(σi(t))] (8)

S(σi(t)|ξµi (t)) = −
∑
σ

p(σi(t)|ξµi (t)) ln[p(σi(t)|ξµi (t))]. (9)

Here p(σi(t)) denotes the probability distribution for the neurons at time t and p(σi(t)|ξµi (t))
indicates the conditional probability that the ith neuron is in a state σi(t) at time t given that
the ith site of the stored pattern to be retrieved is ξµi (t).
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3. Dynamics at arbitrary temperature

We suppose that the initial configuration {σi(1)} is a collection of IIDRV with average
and variance given by E[σi(1)] = E[(σi(1))2] = q0. We furthermore assume that this
configuration is correlated with only one stored pattern, say pattern µ = 1, such that

cov(ξµi (1), σi(1)) = δµ,1M
1
0 ã. (10)

We then obtain the order parameters (5) at the initial time step t = 1 in the thermodynamic
limit by the law of large numbers (LLN). For the main overlap we have

Mµ(1) ≡ lim
N→∞

M
µ

N(1)
LLN= 1

ã
E[ηµi (1)(σi(1)− a)] = 1

ã
cov(ξµi (1), σi(1)) = δµ,1M

1
0 (11)

and for the neural activity

q(1) ≡ lim
N→∞

qN(1)
LLN= E[σi(1)] = q0. (12)

The evolution equations governing the dynamics are then obtained following the methods
based upon a signal-to-noise analysis of the local field (see, e.g., [9–14] for the case without
threshold and without bias, i.e., a = 1

2 ). The local field is split as the sum of a signal (from
the condensed pattern µ = 1) and a noise (from the non-condensed patterns µ > 1). For a
recent overview comparing various architectures we refer the reader to [5]. Since the method
is standard by now we only write down the final results. For a general time step at zero
temperature we obtain

M1(t + 1) = 1 − 1

2

{
erfc

(
(1 − a)M1(t)− θ(t)√

2αD(t)

)
+ erfc

(
aM1(t) + θ(t)√

2αD(t)

)}
(13)

q(t + 1) = aM1(t + 1) +
1

2
erfc

(
aM1(t) + θ(t)√

2αD(t)

)
(14)

D(t + 1) = Q(t + 1) +
1

2πα

{
a exp

(
− (θ(t)− (1 − a)M1)2

2D(t)α

)

+(1 − a) exp

(
− (θ(t) + aM1)2

2D(t)α

)}2

(15)

where Q(t) = (1 − 2a)q(t) + a2 and D(t) is the variance of the residual overlap containing
the influence of the non-condensed patterns µ > 1. The residual overlap is defined as

r
µ

N(t) = 1√
Nã

N∑
i=1

η
µ

i (t)(σi(t)− a) µ > 1 (16)

and causes the intrinsic noise in the dynamics of the main overlap M1(t). Finally, erf(x) =
(2/

√
π)

∫ x
0 dy exp(−y2).

For non-zero temperatures thermal averages denoted by 〈· · ·〉 have to be taken in agreement
with the distribution (1) such that

〈σi(t + 1)〉 = 1
2 [1 + tanh(β〈hi(t)〉)] (17)

and

Mµ(t) ≡ lim
N→∞

〈Mµ

N(t)〉 q(t) ≡ lim
N→∞

〈qN(t)〉. (18)

The stochastic dynamics can then be described through the following equations for the order
parameters:

M1(t + 1) = 1
2

{ ∫
Dx tanh

[
β

(
(1 − a)M1(t)− θ(t) +

√
αD(t)x

)]
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+
∫

Dx tanh

[
β

(
− aM1(t)− θ(t) +

√
αD(t)x

)]}
(19)

q(t + 1) = aM1(t + 1) + 1
2

{
1 +

∫
Dx tanh

[
β

(
− aM1(t)− θ(t) +

√
αD(t)x

)]}
(20)

D(t + 1) = Q(t + 1) +
β

2

{
1 − a

∫
Dx tanh2 β

[
(1 − a)M1(t)− θ(t) +

√
αD(t)x

]

−(1 − a)
∫

Dx tanh2 β

[
− aM1(t)− θ(t) +

√
αD(t)x

]}
(21)

where Dx is the Gaussian measure Dx = x(2π)−1/2 exp(−x2/2). One can show that in
the special case of θ(t) = 0 and a = 1

2 these equations become equivalent to those derived
in [9, 10].

4. Thresholds

4.1. Low activity and self-control

In the limit of low activity it has been emphasized already in the study of extremely
diluted and fully connected architectures that, in general, one should try to keep the pattern
activity of the network during the retrieval process the same as the one for the memorized
patterns [1, 3, 16, 21, 24–26]. In addition, for the layered model considered here one easily
finds for fixed α and zero threshold by using equations (13) and (14) that in the limit a → 0 the
neural activity behaves as q(t) ∼ 1

2 +aM1(t) and always tends to 1
2 . The way to avoid this is to

choose, given a, the capacity α such that aM1(t) ∼ √
2αD(t), however, this means that when

a decreases the critical capacity αc is going to decrease too. In fact, numerical experiments on
the layered model show that for θ = 0 and a ≈ 10−3, αc ≈ 10−4. Similar considerations stay
valid for non-zero temperatures.

Therefore, in the retrieval process we need to control the neural activity and keep it, at each
layer, the same as the one for the stored patterns: q(t) = a. For a network with low activity
this requires the introduction of a threshold θ(t) in the definition of the local field (2). For the
extremely diluted model a time-dependent threshold has been chosen in [3] as a function of the
noise in the system and the pattern activity, adapting itself in the course of the time evolution.
The novel idea was to let the network itself autonomously counter the residual noise at each
time step of the dynamics without having to impose any external constraints. Here, we want
to pursue this idea for the layered model.

In the following we start from an analogous general form for this self-control threshold

θ(t)sc = c(a)
√
αD(t) (22)

where we recall that D(t) is the variance of the noise contribution in the local field. For the
determination of c(a) we consider the form (14) for the layered architecture and require that
the term

erfc

(
aM1(t) + θ(t)√

2αD(t)

)
= erfc

(
aM1(t)√
2αD(t)

+
c(a)√

2

)
∼ e−c(a)2/2

c(a)
√

2π
(23)

must vanish faster than a. This can be realized by choosing c(a) = √−2 ln a. Furthermore,
we remark that in the low-activity limit the recursion relation (15) for D(t + 1) leads to
D(t + 1) ∼ Q(t + 1). This shows explicitly that in this limit the result for the layered model
is similar to the one for the extremely diluted model [3]. Indeed, we intuitively expect that in
the limit of very low activity all models roughly behave in the same way.
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The line of arguments above is also valid at arbitrary temperature. In the limit of low
activity it is straightforward to show that the second term on the rhs of equation (20) vanishes
faster than the activity a.

We recall that this self-control threshold (22) is a macroscopic parameter, thus no average
must be taken over the microscopic random variables at each time step t . We have in fact a
mapping with a threshold changing each time step, but no statistical history intervenes in this
process.

In the next section we study explicitly the influence of this threshold on the retrieval quality
of the network dynamics. For the extremely diluted model [1, 3] and in the case of sparsely
coded sequential patterns [2] it has been shown that this retrieval quality is considerably
improved for low activity. In the case of the extremely diluted model this improvement also
works for not so low activity [3]. Furthermore, although the form of the threshold has been
derived at zero temperature, we also want to find out whether it works at finite temperatures.

4.2. Optimizing the mutual information

We have argued that the mutual information function (7) is a better concept than the Hamming
distance in order to measure the retrieval quality especially in the limit of low activity. So, a
second type of threshold we introduce is obtained by optimizing this mutual information.

We start by calculating the mutual information for the case at hand using the equations (7)–
(9). In what follows we drop the index t . Because of the mean-field character of our model
the following formula hold for every site index i on each layer t . After some algebra we find
for the conditional probability

p(σ |ξ) = [γ0ξ + (γ1 − γ0)ξ ]δ(σ − 1) + [1 − γ0 − (γ1 − γ0)ξ ]δ(σ ) (24)

where γ0 = q − aM1 and γ1 = (1 − a)M1 + q, and where the M1 and q are precisely the
order parameters (5) for N → ∞. Using the probability distribution of the patterns we obtain

p(σ) = qδ(σ − 1) + (1 − q)δ(σ ). (25)

Hence the entropy (8) and the conditional entropy (9) become

S(σ) = −q ln q − (1 − q) ln(1 − q) (26)

S(σ |ξ) = −[γ0 + (γ1 − γ0)ξ ] ln[γ0 + (γ1 − γ0)ξ ]

−[1 − γ0 − (γ1 − γ0)ξ ] ln[1 − γ0 − (γ1 − γ0)ξ ]. (27)

By averaging the conditional entropy over the pattern ξ we get

〈S(σ |ξ)〉ξ = −a[γ1 ln γ1 + (1 − γ1) ln(1 − γ1)]

−(1 − a)[γ0 ln γ0 + (1 − γ0) ln(1 − γ0)] (28)

such that the mutual information function (7) for the layered model is given by

I (σ ; ξ) = −q ln q − (1 − q) ln(1 − q) + a[γ1 ln γ1 + (1 − γ1) ln(1 − γ1)]

+(1 − a)[γ0 ln γ0 + (1 − γ0) ln(1 − γ0)]. (29)

At time t the mutual information function depends on the main overlap M1(t), the neural
activity q(t), the pattern activity a, the load parameter α and the inverse temperature β.
The evolution of the main overlap and of the neural activity (equations (13), (14) for zero
temperature and (19), (20) for arbitrary temperature) depends on the specific choice of the
threshold in the definition of the local field (2). We consider a time-independent threshold
θ(t) = θ and calculate the value of (29) at equilibrium for fixed a, α, M0, q0 and β. The
optimal choice for this threshold chosen at equilibrium, θ = θopt, is then the one for which the
mutual information function is maximal.
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Figure 1. The information i as a function of θ for a = 0.01 and several values of the load parameter
α = 0.1, 1, 2, 4 (bottom to top).

5. Results

We have studied the retrieval properties for the layered model with θsc and θopt by numerically
solving the recursion relations derived in section 3 with an activity ranging from a = 0.001
to 0.3 at various inverse temperatures β = 3, 4, 5, 10, 100,∞. We are interested only in the
retrieval solutions with M1 > 0 (in what follows we drop the superscript 1) and carrying a
non-zero information I . The results for zero and non-zero temperature have been analysed
separately. Our main aim is to study how self-control introduced for extremely diluted networks
also works for other models, in the case of a layered architecture at zero temperature, as claimed
in [3], and to check whether such a threshold can still be useful at non-zero temperatures.
Moreover, we compare this self-control method, which is mainly designed for low activity but
also works for higher activities, with the optimization method. The latter works for all values
of the activity although it has to be found externally for every loading and every temperature.

5.1. Zero temperature

In figure 1 we have plotted the information content i = αI as a function of θ without self-
control or a priori optimization for pattern activity a = 0.01 and different values of the load
parameter α. For every value of α, below its critical value, there is a range for the threshold
where the information content is different from zero. For any choice of the threshold in
this range retrieval is possible. This retrieval range becomes very small when the capacity
approaches its critical value αc = 4.72.

Defining the basin of attraction as the range of initial valuesM0 ∈ [0, 1] which lead to the
retrieval attractor M(t) ∼ 1, we note at this point that the size of this basin strongly depends
on the specific choice of the threshold in the retrieval range. Technically it turns out that the
value to be chosen for the latter in order to have the largest basin is the minimal θ in the
retrieval range. This, of course, has to be repeated for every α. This threshold optimizes the
information content and is called, as specified before, θopt.

Figure 2 represents the dynamical evolution of the network. The retrieval overlap M(t)
is shown as a function of time for different initial values M0, q0 = 0.001 = a and α = 25.
A self-control threshold θsc = [−2(ln a)αQ(t)]−1/2 (figure 2(a)) is compared with an optimal
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Figure 2. The evolution of the main overlapM(t) for several initial valuesM0 withq0 = a = 0.001,
α = 25 for the self-control model (a) and the optimal threshold model (b).

Figure 3. The basin of attraction as a function of α for a = 0.001 for the self-control model (full
curve) and the optimal threshold model (dashed curve).

threshold θopt (figure 2(b)) concerning the values of the minimalM0 for retrieval, the fixed-point
M∗ and the critical capacity αc. It is seen that self-control works better than optimization and
both much better than a zero threshold (where there is no retrieval at all since αc = 5.3 × 10−5

only). This can be interpreted as a result of the property of adaptivity in the course of the time
evolution inherent in the self-control method.

In figure 3 the retrieval phase diagram is illustrated for a = 0.001 and q0 = a. In the
low-activity limit the basin of attraction is substantially improved by self-control even near
the border of the critical storage. Hence, the storage capacity is also larger with self-control.
Furthermore, we have compared these curves with the one for a model without threshold in the
low-activity limit. Since we find a very small storage capacity (of order 10−4) such a network
without threshold has very little interest.

Plotting the retrieval fixed-pointM∗ as a function ofαwe have found a first-order transition
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Figure 4. The retrieval fixed-points M∗ as a function of α for the self-control model (full
curve) and the optimal threshold model (dashed curve) with decreasing pattern activity: a =
0.3, 0.1, 0.05, 0.03, 0.01 (from left to right).

from the retrieval phase (M∗ > 0) to the non-retrieval one (M∗ = 0), see figure 4 for different
values of a. We remark that the curves for a = 0.001 are out of the scale of this figure.
In this case we find αc = 34.32 and M∗ ∼ 1 for 0 < α < 20. We compare the fixed-
point behaviour found with self-control (solid curves) with the results obtained by choosing
the threshold through the optimization of the mutual information function (dashed curves).
Roughly speaking, self-control is the best choice for activities below 0.05. For a above this
value, but still small compared with a homogeneous distribution a = 1

2 , e.g. a = 0.3, self-
control continues to perform quite well, however it ceases to be better than optimization.

Finally, we have studied the leading behaviour of the critical capacity in the limit a → 0.
We have found that αc(a) ∼ (a| ln a|)−1. This is consistent with former studies on other
low-activity models (see [1, 3] and references therein). Moreover, we remark that for a in the
range (10−4, 10−3) the proportionality coefficient seems to be constant and given by 0.25.

5.2. Non-zero temperature

Since self-control is completely autonomous and since it also improves the retrieval quality
for not so sparse networks it is worth checking how it performs for non-zero temperatures. In
addition, in this case we compare it with the optimal threshold for which we recall that it has
to be calculated by hand when the network has reached equilibrium for every loading α and
every inverse temperature β.

In figure 5 we have studied the retrieval fixed-points of the main overlap as a function
of the load parameter for different values of the temperature and of the pattern activity. The
results are plotted for a = 0.1 (figure 5(a)) and a = 0.001 (figure 5(b)) and increasing β. The
lines end at the critical capacity where a first-order transition to the non-retrieval phase occurs.
At this point we also recall that for these non-zero temperatures in both cases the presence of a
non-zero threshold is strictly necessary in order for the network to evolve toward the retrieval
phase for these storage capacities. As in the zero-temperature case, without considering any
threshold at all the storage capacity would be very small (αc < 10−4 at low activity) and the
dynamics of the network would be uninteresting.
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Figure 5. The retrieval fixed-points M∗ as a function of α for several values of the inverse
temperature for the self-control model (full curve) and the optimal threshold model (dashed curve)
for a = 0.1 (a) and a = 0.01 (b).

For β = 100 the results of the deterministic network are found back. For a = 0.1 we
already know from the previous analysis at zero temperature that optimization works better
than self-control. For a = 0.01 the reverse situation is valid. For smaller β and smaller
storage capacities self-control does not work as well. Optimization leads to a bigger value for
the retrieval overlap than self-control does.

For the lowest pattern activity a = 0.01 (figure 5(b)) self-control works less well for
increasing temperature. The critical capacity of the network with self-control is smaller than
the critical capacity obtained by optimization. In fact, for β = 3, 4 it is about half. For pattern
activity below a = 0.01 the critical capacity with self-control becomes still smaller and it is
smaller than the critical capacity obtained by optimization.

We can then summarize the peculiar behaviour with self-control for small storage
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capacities as follows. We usually expect the retrieval fixed-points to have the greatest overlap
values at zero storage capacity and then to slowly decrease until the critical capacity is reached,
where there is a phase transition. This is, indeed, the behaviour at zero temperature with
whatever choice of the threshold. At non-zero temperature this behaviour is found with the
optimization approach, with the self-control method the retrieval fixed-points obtain their
maximal retrieval overlap not at zero capacity, but at a higher value.

The analysis of the temperature-capacity phase diagram with self-control and optimization
for different values of the pattern activity is summarized in figure 6. We discuss the results
for decreasing a. For a = 0.1, figure 6(a), the two methods give similar results except near
zero temperature where the critical capacity with optimization is slightly bigger than with
self-control, like we expect from the analysis at zero temperature. Decreasing the value of the
pattern activity to a = 0.01, figure 6(b), self-control starts to work less well for a bigger region
of high temperatures but it is better at lower temperatures. The curves in figure 6(c) show that at
high temperature the region of retrieval with self-control becomes rather small when the activity
is further lowered to a = 0.001. We also remark that for any choice of the pattern activity
below 0.05 there is a value of the temperature where the two curves intersect. This is consistent
with the fact that at low activity in the limit of zero -temperature self-control works better than
opimization for a < 0.05. We conclude that, compared with optimization, self-control gives
quite good results for activities in the range a ∈ [0.01, 0.05]. When we want to consider lower
activities (a = 0.001 and less) at arbitrary non-zero temperature self-control ceases to be a good
method to control the noise during the dynamics of the network. In this case the temperature-
dependent externally chosen threshold optimizing the mutual information function leads to
better retrieval qualities than the temperature-independent self-control threshold.

6. Concluding remarks

In this paper we have studied the effects of a threshold in the gain function on the parallel
dynamics in layered neural networks with variable activity. Such a threshold considerably
enlarges the critical storage capacity of the network. Two different types of thresholds are
compared. The first one forces the neural activity to be the same as the activity of the stored
patterns at every step of the retrieval process and adapts itself for this purpose in the course of
the time evolution. It provides a complete self-control mechanism. The second optimizes the
mutual information function in equilibrium. It has to be given externally. Up to now such a
systematic comparative study has only been performed for extremely diluted neural networks
the dynamics of which is easier due to the fact that the neurons are completely uncorrelated
beyond one time step.

For zero temperatures and low activity a � 0.5 it is found that self-control performs the
best in considerably improving the storage capacity, the basin of attraction and the mutual
information content, exactly as for extremely diluted models. And, in comparison with the
optimization method, it even gives a comparable improvement for higher activities. Moreover,
for non-zero temperatures self-control, although being designed at temperature zero, still gives
quite good results for lower activities (a < 0.5) that are bigger than 0.01. Outside this region
optimization done externally for every loading and every temperature leads to better overall
retrieval qualities (except, obviously, near the critical capacity at zero temperature). It is worth
studying whether self-control can still be improved by making it temperature dependent and/or
whether optimization of the mutual information content can be done in a self-controlled way.
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Figure 6. The temperature–capacity phase diagram for the self-control model (full curve) and the
optimal threshold model (dashed-dotted curve) for a = 0.1 (a), a = 0.01 (b) and a = 0.001 (c).
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